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ABSTRACT
Light and matter can strongly mix together to form hybrid particles called polaritons. In
recent years, polaritons in the so-called ultrastrong coupling (USC) regime have attracted
much attention both from fundamental and applied points of view. A variety of nonintu-
itive phenomena and novel ground states with exotic properties have been predicted for
systems in the USC regime, some of which have been experimentally realized. In this
chapter, we review the current state of this exciting, rapidly developing field, focusing on
USC phenomena in engineered semiconductor systems. We start by giving a brief histori-
cal survey of the field and describe themotivations to pursueUSCstudies. We then provide
a detailed mathematical description of the existing theoretical models for USC physics,
mentioning some of the controversies related to the approximations and assumptions that
break down in the USC regime. Furthermore, we describe some of the groundbreaking
experiments that have been conducted recently in diverse semiconductor-based platforms
such as intraband transitions, plasmon-phonon polaritons, exciton polaritons, magnon
polaritons, and magnon-magnon coupled systems, highlighting the new physics revealed.
Finally, we end the chapter by mentioning some of the technological applications that
are expected to be enabled by USC, especially in connection with modern information
technologies such as quantum computing and quantum information processing.
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1.1 INTRODUCTION

The main scientific question this chapter deals with is: What is the nature of
the ground state of a condensed matter system that is ultrastrongly coupled
with vacuum electromagnetic fields inside a cavity? There are a variety of
theoretically predicted many-body cavity quantum electrodynamics (QED) ef-
fects, states, and phases in the ultrastrong coupling (USC) regime [Forn-Díaz
et al. (2019), Kockum et al. (2019)], and it is our goal to review these hitherto-
unobserved phenomena. Such phenomena can also be utilized for constructing
unique protocols for ultrafast gates and ultrasecure state preparation for quantum
information processing. Specifically, we provide an overview of the current
state of theoretical and experimental studies of cavity QED systems in the USC
regime based on semiconductor quantum wells (QWs), graphene, carbon nan-
otubes (CNTs), and strongly correlated materials.

1.1.1 What is the ultrastrong coupling regime?

In a cavity embedding matter, there are four quantities that jointly characterize
different light-matter coupling regimes: ωc, g, κ, and γ. Here, ωc is the cavity
mode photon angular frequency, and the parameter g is the coupling strength (or
constant or rate). The parameter κ is the photon decay rate of the cavity; τcav =
κ−1 is the photon lifetime of the cavity, and the cavity quality factor is defined
as Q = ωcτcav. The parameter γ is the nonradiative matter decay rate, which is
usually the decoherence rate in the case of solids.

The simplest Hamiltonian one can write down for this system is

H = ~ωcâ†â + ~ωab̂†b̂ + i~g(â†b̂ − b̂†â). (1.1)
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Here, â (â†) and b̂ (b̂†) are the annihilation (creation) operators for cavity photons
andmatter excitations, respectively. When thematter resonance frequency,ωa, is
equal to the cavity frequency,ωc, i.e.,ωa = ωc ≡ ω0, the eigenfrequencies of the
coupled system is obtained asω± = ω0±g, corresponding to the lower polariton
(LP) and upper polariton (UP). The frequency difference between them, 2g, is
called the vacuum Rabi splitting (VRS).
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FIGURE 1.1 The parameters that define different light-matter coupling regimes.
(a) Sketch of a system consisting of an ensemble of atoms (with multiple levels |0〉, |1〉,
|2〉, ...) and a lossy cavity of light. Each atom can be excited by absorbing a photon. A
photon is reemitted through relaxation of an atom, while no photon is sometimes emitted
by a nonradiative matter decay. g: light-matter coupling rate, γ: matter decay rate, and
κ: photon decay rate. (b) Absorption spectra of the cavity system in the SC (blue) and
USC (red) regimes in the case of zero detuning ωa = ωc = ω0. The SC is defined as
2g > (γ+ κ)/2, when the VRS is larger than the linewidth. Furthermore, the USC regime
arises when g is a significant fraction of the resonance frequency, ω0.

Strong coupling (SC) is achieved when the VRS, 2g, is larger than the
linewidth, (κ + γ)/2; see Fig. 1.1. USC is achieved when g becomes a consider-
able fraction (say, 10%) ofω0, and some authors define the deep strong coupling
(DSC) regime as g/ω0 > 1 [Casanova et al. (2010)]. The two standard figures
of merit to measure the coupling strength are

C ≡ 4g2/(κγ), (1.2)
η ≡ g/ω0. (1.3)

Here, C is referred to as the cooperativity parameter, which is also the deter-
mining factor for the onset of optical bistability through resonant absorption
saturation [Bonifacio & Lugiato (1982)], and η is the normalized coupling
strength. Using these parameters, the three regimes of light-matter coupling are
defined as follows [Forn-Díaz et al. (2019), Kockum et al. (2019)]:

SC : 2g > (κ + γ)/2 (or C > 1),USC : η > 0.1, and DSC : η > 1

Note that the above Hamiltonian, Eq. (1.1), includes only the so-called co-
rotating coupling terms, for which the total number of photons and matter exci-
tations is conserved. As is discussed in more detail in Sect. 1.2, this Hamiltonian
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is derived under the rotating-wave approximation (RWA). In general, counter-
rotating terms (CRTs), i~g(â†b̂† − âb̂), also appear in the Hamiltonian and
become non-negligible in the USC and DSC regimes, where they play essential
roles in inducing non-intuitive physical phenomena.

In Table 1.1, we summarize the commonly used light–matter couplingmodels
(orHamiltonians). In the Jaynes–Cummingsmodel and the quantumRabimodel,
matter, approximated as a single two-level atom (or a two-level quantum dot),
couples with a single photonic mode. The difference between the two models
is that the former adopts the RWA, i.e., neglects the CRTs, while the latter
retains the CRTs. When the matter is instead approximated as multiple two-
level atoms, these models are called the Tavis–Cummings model and the Dicke
model, respectively. On the other hand, when the matter is approximated as a
single bosonic excitation as in Eq. (1.1), the model becomes the Hopfield model,
irrespective of whether the RWA is used.

1 two-level atom N two-level atoms Bosonic excitations
Within RWA Jaynes–Cummings model Tavis–Cummings model Hopfield model

Beyond RWA Quantum Rabi model Dicke model Hopfield model

TABLE 1.1 Light-matter coupling Hamiltonians. Under the RWA, the CRTs are ne-
glected in the Hamiltonian.

1.1.2 Why ultrastrong light–matter coupling?

It is important to note that in cavity QED systems in the USC regime the “light
field” that the matter strongly couples with is not an external laser field but the
vacuum fluctuation field in the cavity. This fact makes USC physics distinctly
different from ordinary nonlinear optical phenomena, which require a strong
external field and thus inevitably involve excited and/or nonequilibrium matter
states. In contrast, USC phenomena arise from the properties of the ground state
of the matter-vacuum hybrid in equilibrium. This new ground state is a matter-
vacuum entangled state [Ciuti et al. (2005), Ashhab & Nori (2010), Felicetti
et al. (2015)], which has characteristics that neither the original matter ground
state nor the usual vacuum possesses.

There is a long history of theoretical studies of USC physics. Early studies
focused on the breakdown of the RWA [Bloch & Siegert (1940), Shirley (1965),
Cohen-Tannoudji et al. (1973), Allen & Eberly (1975), De Zela et al. (1997)].
After the 1973 discovery of a new type of phase transition, the superradiant
phase transition (SRPT), based on the Dicke Hamiltonian [Hepp & Lieb (1973),
Wang & Hioe (1973)], attention has been paid to the properties of the ground
state and the resultant nonintuitive quantum phenomena: e.g., quantum vacuum
radiation [Ciuti et al. (2005), Ciuti & Carusotto (2006), De Liberato et al. (2007),
Auer &Burkard (2012), Hagenmüller (2016)] (similar to the Unruh-Hawking ra-
diation from black hole explosions [Unruh (1974), Hawking (1974, 1975), Unruh
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(1976), Yablonovitch (1989)]) induced by the dynamic Casimir effect [Moore
(1970), Fulling & Davies (1976), Kardar & Golestanian (1999)] or through
spontaneous conversion [Stassi et al. (2013)], unusual photon counting statis-
tics [Ridolfo et al. (2012)], the breakdown of the Purcell effect or light-matter
“decoupling” [De Liberato (2014), Jaako et al. (2016)], single-photon nonlin-
ear optics [Sanchez-Burillo et al. (2014)], quantum chaos [Emary & Brandes
(2003b,a)], spontaneous parity-symmetry breaking [Bamba et al. (2016)], and
ground state electroluminescence [Cirio et al. (2016, 2019)].

For applications, solid-state cavity or circuit QED systems in the USC regime
have been recognized to be promising for quantum simulations, simulating,
e.g., the quantum Rabi model [Ballester et al. (2012), Mezzacapo et al. (2014),
Hwang et al. (2015), Puebla et al. (2017)], Dirac equation physics [Pedernales
et al. (2013)], and Dicke physics [Mezzacapo et al. (2014), Lamata (2017)].
Furthermore, the many-body entangled ground states [Ashhab & Nori (2010),
Felicetti et al. (2015)] can be used to construct quantum information processing
protocols [Wang et al. (2010)] for, e.g., cat-state-based quantum error correc-
tion [Ofek et al. (2016)]. Also, ultrafast two-qubit quantum gates have been
considered [Romero et al. (2012), Kyaw, Herrera-Martí, Solano, Romero &
Kwek (2015), Kyaw, Felicetti, Romero, Solano & Kwek (2015), Wang et al.
(2016)]; in particular, Romero et al. (2012) used ab initio calculations to demon-
strate quantum gates in the USC regime that can be performed at subnanosecond
time scales. Finally, Nataf and Ciuti showed that the qubit coherence time and
fidelity of a universal set of quantum gates can be dramatically improved in an
optimal regime of USC [Nataf & Ciuti (2011)].

Another possible application of USC is the “quantum battery,” where quan-
tum coherence or entanglement enhances the stored energy density or the charg-
ing power (stored energy over charging time). Ferraro et al. (2018) theoretically
suggested that, in the Dicke model, the charging power can be enhanced by
factor

√
N for N � 1 due to the Dicke cooperativity (inter-atom entanglement

mediated by the photonic mode), i.e., the charging time is shortened by
√

N .
Further, they also suggested that the stored energy density can be enhanced by
rearrangement of charges in the superradiant phase obtained by USC [Ferraro
et al. (2019)]. These studies are reviewed by Ferraro et al. (2020).

Finally, it has been proposed thatUSCmaybe useful for darkmatter detection.
An axion haloscope for detecting galactic axions can be improved by the use
of magnon–photon USC in a GHz-frequency cavity embedding a yttrium iron
garnet (YIG) sphere [Flower, Bourhill, Goryachev & Tobar (2019), Flower,
Goryachev, Bourhill & Tobar (2019)]. While many ongoing axion haloscope
projects are based on the expected axion–photon interaction, an interaction
between axions and electron spins may also exist. Flower, Bourhill, Goryachev
& Tobar (2019) reported an experimental setup to detect signals of magnon
polaritons excited by axions. The magnon–photon USC enlarges the frequency
(energy) range of the haloscope [Flower, Goryachev, Bourhill & Tobar (2019)],
which is essential for narrowing the parameter space where axions may exist.
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1.1.3 Why solid-state cavity QED systems for USC studies?

In order to maximize C and η, one should construct a cavity QED setup that
combines a large dipole moment (i.e., large g), a small decoherence rate (i.e.,
small γ), a large cavity Q factor (i.e., small κ), and a small resonance frequency
ω0. Condensed matter (or solid-state) systems have a particular advantage
over atomic and molecular systems in achieving large g values. This is due
to the cooperative

√
N-fold enhancement of light-matter coupling, i.e., Dicke

cooperativity, expected for an N-body system [Dicke (1954), Kaluzny et al.
(1983), Amsüss et al. (2011), Tabuchi et al. (2014), Zhang, Zou, Jiang & Tang
(2014)], combined with colossal dipole moments available in solids.

Semiconductor QWs can create clean and tunable solid-state environments
with quantum-engineered optical properties. Microcavity exciton polaritons in
a QW — a strongly coupled light-condensed-matter system — have exhibited a
diverse array of quantum many-body phenomena [Khitrova et al. (1999), Deng
et al. (2010), Gibbs et al. (2011)]. However, due to the relatively large values of
ω0, corresponding to the near-infrared and visible ranges, and relatively small
dipolemoments for interband transitions, it is not practical to achieve large values
of η = g/ω0 using QW exciton polaritons.

As detailed in Sect. 1.3.1, intraband transitions, including intersubband tran-
sitions (ISBTs) [Helm (2000), Paiella (2006)] and cyclotron resonance (CR) [Lax
& Mavroides (1960), McCombe & Wagner (1975), Kono (2001), Hilton et al.
(2012)], are much better suited for exploring USC phenomena because of their
small ω0, typically in the midinfrared (MIR) and THz range, and large dipole
moments. Liu (1997) first proposed and analyzed ISB polaritons theoretically;
Ciuti et al. (2005) discussed the nonclassical nature of the ground-state proper-
ties of ISB polaritons in the USC regime. The first experimental observation of
polariton splitting of ISBTs was reported by Dini et al. (2003), followed by a
similar observation by Dupont et al. (2003); these early studies already reported
η values >0.01. Progressively higher values of η have since been reported
by various experimental groups [Anappara et al. (2005, 2006, 2007), Dupont
et al. (2007), Sapienza et al. (2007, 2008), Todorov et al. (2009), Anappara et al.
(2009), Günter et al. (2009), Geiser et al. (2010), Todorov, Andrews, Colombelli,
De Liberato, Ciuti, Klang, Strasser & Sirtori (2010), Zanotto et al. (2010), Jouy
et al. (2011), Geiser et al. (2012), Porer et al. (2012), Zanotto et al. (2012),
Delteil et al. (2012), Dietze et al. (2013), Askenazi et al. (2014, 2017), Laurent
et al. (2017), Jeannin et al. (2019)].

CR, i.e., inter-Landau-level transitions (ILLTs), has also been used to study
strong coupling in two-dimensional electron gases (2DEGs) in semiconductor
QWs [Scalari et al. (2012), Muravev et al. (2013), Maissen et al. (2014), Zhang,
Lou, Li, Reno, Pan, Watson, Manfra & Kono (2016), Maissen et al. (2017),
Bayer et al. (2017)] and on the surface of liquid helium [Abdurakhimov et al.
(2016)]. In some of these cases, extremely high values of η (= 0.87 [Maissen
et al. (2014)] and = 1.43 [Bayer et al. (2017)]) have been achieved. More recently,
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FIGURE 1.2 Vacuum Bloch-Siegert shift of Landau polaritons with ultrahigh co-
operativity [Bamba et al. (2019)]. Numerically calculated THz transmission for the
CR–cavity system for interaction strength (a) g/2π = 37.5 GHz, (b) g/2π = 75.0 GHz,
and (c) experimental data (interaction strength is estimated as g/2π = 150.1 GHz) as a
function of frequency ω/2π and external DC magnetic field BDC. Dashed red and black
lines show bare cavity and CR frequencies, respectively, without considering their inter-
action. At BDC > 0, the CR and a circularly polarized probe THz wave are co-rotating
and the VRS (anticrossing) is obtained. At BDC < 0, the vacuum BS shift appears due to
the counter-rotating coupling between the CR and the circularly polarized cavity field as
highlighted by the gray shaded areas.

clear evidence has been obtained for the breakdown of the RWA [Li, Bamba,
Zhang, Fallahi, Gardner, Gao, Lou, Yoshioka, Manfra & Kono (2018)], which
resulted in a shift in the resonance frequency known as the Bloch-Siegert (BS)
shift [Bloch & Siegert (1940)]; see Fig. 1.2. The lowest-order term in the BS
shift is on the order of g2/ω0 [Allen & Eberly (1975)]. Higher-order terms of
the BS shift have also been calculated quantum mechanically [Shirley (1965),
Cohen-Tannoudji et al. (1973)], which have to be taken into account in order
to correctly estimate the magnetic moment values from magnetic resonance
experiments [Abragam (1961)]. It should be emphasized that this is a vacuum
BS shift in a Landau-polariton system, which occurs when the average photon
number inside the cavity is much less than one. The shift in this case is caused by
theUSC of a Landau-quantized 2DEGwith the counter-rotating component
of the vacuum fluctuation field inside the cavity.

1.2 THEORY OF ULTRASTRONG LIGHT–MATTER COUPLING

1.2.1 Hamiltonians and resonance frequencies

Whenwe do not consider the spin degree of freedom, the Hamiltonian describing
the electromagnetic fields and charged particles (electrons and ions) is generally
expressed by the so-called minimal-coupling Hamiltonian [Cohen-Tannoudji
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et al. (1989)]

Ĥv =

∫
dr

[
ε0Ê⊥(r )2

2
+

B̂(r )2

2µ0

]
+

N∑
j=1

[ p̂ j − e j Â(r j )]2

2m j
+ V̂ ({ r̂ j }). (1.4)

This is derived in the Coulomb gauge by the Legendre transformation of a
Lagrangian describing Maxwell’s equations and Newton’s equations of motion
with the Lorentz force. The first and second terms are the energies of the
transverse component of the electric field Ê⊥(r ) = −Π̂ (r )/ε0 and of the mag-
netic field B̂(r ) = ∇ × Â(r ), respectively. Â(r ) is the vector potential, and
Π̂ (r ) is its conjugate momentum satisfying [Â(r ), Π̂ (r ′)] = δ⊥(r − r ′), where
δ⊥(r ) = δ(r )1 − (2π)−3

∫
dk (kk/k2)eik ·r is the dyadic transverse delta func-

tion [Cohen-Tannoudji et al. (1989)]. The third term in Eq. (1.4) represents the
kinetic energy of the charged particles. r̂ j and p̂ j are, respectively, the position
and momentum of the j-th particle with a mass m j and a charge e j . They satisfy
[r̂ j, p̂ j′] = i~δ j, j′1. N is the number of the charged particles. The last term
in Eq. (1.4) represents the Coulomb interaction. The interaction between the
electromagnetic fields and charged particles is obtained by expanding the third
term in Eq. (1.4).

We can transform theminimal-coupling Hamiltonian, Eq. (1.4), into different
forms. Here, we define the electric polarization as P̂(r ) ≡

∑N
j=1 e j r̂ jδ(r − R j ),

where R j is the position of a lattice site to which the j-th particle belongs. This
expression is valid in the long-wavelength approximation, i.e., the distance | r̂ j −
R j | between the particle and the lattice site is much shorter than the wavelength
of interest. By using an unitary operator Û ≡ exp[(i~)−1

∫
dr Â(r ) · P̂(r )], we

get a different form of Hamiltonian Ĥl ≡ ÛĤvÛ† as

Ĥl =

∫
dr

{
[D̂(r ) − P̂⊥(r )]2

2ε0
+

B̂(r )2

2µ0

}
+

N∑
j=1

p̂ j
2

2m j
+ V ({ r̂ j }), (1.5)

wherewe used the following relations: ÛΠ̂ (r )Û† = Π̂ (r )+P̂⊥(r ) and Û p̂ jÛ† =
p̂ j + e j Â(R j ) for the transverse component of the electric polarization P̂⊥(r ) ≡∫

dr δ⊥(r − r ′) · P̂(r ). In this form, the interaction between the electromagnetic
fields and charged particles is obtained by expanding the first term in Eq. (1.5),
which still represents the energy of the transverse electric field but is described
by the electric displacement field D̂(r ) = −Π̂ (r ) and the trasverse electric polar-
ization P̂⊥(r ). The transformation beyond the long-wavelength approximation
is known as the Power–Zienau–Woolley transformation [Cohen-Tannoudji et al.
(1989)].

Equations (1.4) and (1.5) are said to be in the velocity and length forms,
respectively, or sometimes called the Coulomb gauge and the dipole gauge,
respectively. These two forms in principle give the same physics in the long-
wavelength approximation. However, in calculations of specific systems, we
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usually truncate some of the matter levels and electromagnetic modes. For
example, as shown in Fig. 1.3, there are in general more than two subbands
in the conduction and valence bands and many cavity modes in a Fabry–Pérot
(FP) cavity. We usually focus on just two subbands and one cavity mode in a
frequency range of interest, and neglect the other levels (subbands) and cavity
modes. However, if we perform such truncation, Hv and Hl are no longer
related to each other through a unitary transform; i.e., they are not equivalent
and thus give different dynamics. Such truncation is justified (and thus the two
Hamiltonians become approximately equivalent) only when the neglected levels
and modes exist far out of the frequency range of interest. However, in the USC
regime, the frequency range of interest becomes extremely large, and the
influence of truncation frequently becomes crucial [Bamba & Ogawa (2016),
De Bernardis et al. (2018)].

FIGURE 1.3 Sketches of subbands in a semiconductor QW and cavity modes in a
FP cavity. In real systems, there can be many subbands in the conduction and valence
bands and many cavity modes (as indicated by the three dots in each). However, in
theoretical analyses, one usually focuses on only some of the subbands and cavity modes
(i.e., truncate the other bands and modes). Such simplification invalidates the unitary
transformation between the Hamiltonians in the velocity and length forms.

This truncation issue is related to the so-called gauge ambiguity problem,
which has attracted much attention in recent years, especially in deriving the
Jaynes-Cummings and quantum Rabi models. We can derive these models from
both forms of the Hamiltonian by truncation. However, when we compare the
eigenfrequencies between the truncated and original Hamiltonians, one form can
show better agreement than the other. Then, one faces the question of which
form gives a better approximation after truncation is done. As we will see in
Sect. 1.2.1.2, the length form usually provides a better approximation in the case
of electric dipole transitions. It has recently been pointed out that the velocity
form can also give the same level of approximation if we properly transform
the Coulomb potential V under truncation [Di Stefano et al. (2019), Garziano
et al. (2020)]. On the other hand, it has also been suggested that a much better
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approximation can be obtained when one performs truncation in an intermediate
form between the velocity and length forms [Stokes & Nazir (2019a), Roth et al.
(2019)]. The case of time-dependent light–matter interactions has also been
discussed [Stokes & Nazir (2019b)].

In the following, instead of discussing the ambiguity issues in more detail, we
will derive simple Hamiltonians for three cases. In Sect. 1.2.1.1, we provide a
general discussion on the quantization of electromagnetic fields. In Sect. 1.2.1.2,
ISBTs in semiconductor QWs in the USC regime are theoretically described. In
Sect. 1.2.1.3, the physics of optical phonons and excitons in bulk semiconductors
in the USC regime is examined. In these two cases, it is known that the length
form gives a better convergence than the velocity form formatter-level truncation.
In Sect. 1.2.1.4, CR in a 2DEG in a cavity, or Landau polaritons, is described. In
this case, the velocity form is suitable for deriving a simple Hamiltonian, and it
well explains the experimental results presented in Sect. 1.3 (see also Fig. 1.2).

1.2.1.1 Sum rule and quantization of electromagnetic fields
As a general discussion common to all three cases (ISBTs, phonons/excitons,
and CR), let us first define the Hamiltonians of the electromagnetic fields and
charged particles, respectively, as

Ĥem =

∫
dr

{
Π̂ (r )2

2ε0εbg
+

[∇ × Â(r )]2

2µ0

}
, (1.6a)

Ĥmat =

N∑
j=1

p̂ j
2

2m j
+ V̂ ({ r̂ j }). (1.6b)

Here, we consider a part of the matter as a dielectric medium with a frequency-
independent (non-dispersive) relative permittivity εbg and put it into Ĥem. Then,
the speed of light in the Ĥem system is v ≡ c/√εbg. The total Hamiltonians in
Eqs. (1.4) and (1.5) can then be rewritten as

Ĥv = Ĥem + Ĥmat +

N∑
j=1


−

e j p̂ j · Â(r j )
m j

+
e j2 Â(r j )2

2m j


, (1.7a)

Ĥl = Ĥem + Ĥmat +

∫
dr

[
−
D̂(r ) · P̂⊥(r )

ε0εbg
+

P̂⊥(r )2

2ε0εbg

]
. (1.7b)

In each expression, the third term represents the light-matter coupling. The last
term in Eq. (1.7a) [Eq. (1.7b)] is called the A2 [P2] term or the diamagnetic term.

From the matter Hamiltonian Ĥmat, Eq. (1.6b), together with the relation
(m j/~2)[r̂ j, [Ĥmat, r̂ j]] = 1, we can derive the following general relation called
the Thomas–Reiche–Kuhn (TRK) sum rule [Luttinger & Kohn (1955)]:∑

n

fn,i = 1, (1.8)
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where fn,i is the oscillator strength for the transition from an initial state (i-th
state) to the n-th state and is defined as

fn,i ≡
2m jωn,i

e j2~
|dn,i |

2. (1.9)

Here, ωn,i is the frequency difference between the two states, and dn,i ≡
〈n|e j r̂ j |i〉 is the transition dipole moment.

Next, let us rewrite the Hamiltonian Ĥem of the electromagnetic fields in
terms of the annihilation and creation operators of photons. Following the
procedure of quantization of the electromagnetic wave in an dielectric medium
described by Glauber & Lewenstein (1991), we can write the operators of the
vector potential and its conjugate momentum as

Â(r ) =
∑
k

√
~

2ε0εbgωk

[
ψ∗k (r )â†

k
+ ψk (r )âk

]
, (1.10)

Π̂ (r ) =
∑
k

i
√
ε0εbg~ωk

2
[
ψ∗k (r )â†

k
− ψk (r )âk

]
. (1.11)

Here, âk is the photon annihilation operator for the k-th mode, satisfying
[âk, â†k′] = δk,k′ ,ωk is the eigenfrequency, andψk (r ) is the wavefunction includ-
ing the polarization direction. The Hamiltonian of the electromagnetic wave is
then rewritten as

Ĥem =
∑
k

~ωk

(
â†
k
âk +

1
2

)
. (1.12)

1.2.1.2 Intersubband transitions
Let us consider an ISBT in a semiconductor QW embedded in a microcavity.
From a one-body potential in the QW through the Coulomb interaction V̂ ,
subbands for electrons (holes) can be obtained within the conduction (valence)
band. We focus on two subbands with a frequency difference of ωa and describe
the j-th electron or hole by Pauli operators: σ̂z

j ≡ |1j〉 〈1j | − |0j〉 〈0j |, σ̂+j ≡
|1j〉 〈0j |, σ̂−j ≡ |0j〉 〈1j |, σ̂x

j = σ̂
+
j + σ̂

−
j , and σ̂

y
j = −i(σ̂+j − σ̂

−
j ), where |0j〉 and

|1j〉 represent the lower and upper subband states of the j-th particle, respectively.
We assume that the QW is placed in a FP cavity with perfect mirrors, distance L,
and area S, for which ωc = v(nπ/L) and ψ = eξ (2/SL)1/2 sin[(nπ/L)z]eik‖ ·r‖

for the n-th cavity mode with in-plane wavevector k ‖ polarized in the ξ direction.
By neglecting many-body Coulomb interactions (nonlinear responses) in V̂

as well as in-plane energy dispersions, we can write the matter Hamiltonian,
Eq. (1.6b), as

Ĥmat =

N∑
j=1

~ωa
2

(
σ̂z

j +
1
2

)
= ~ωa

(
Ŝz +

N
2

)
, (1.13)
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where Ŝξ ≡
∑N

j=1 σ̂
ξ
j /2 is a N

2 -spin operator representing the ensemble of
particles. When we focus on just one cavity mode, the Hamiltonians in the two
forms, Eqs. (1.7), are rewritten as

Ĥv/~ ≈ ωcâ†â + ωa

(
Ŝz +

N
2

)
+

2ḡ
√

N
Ŝy (â† + â) + D(â† + â)2, (1.14a)

Ĥl/~ ≈ ωcâ†â + ωa

(
Ŝz +

N
2

)
+

i2g̃
√

N
Ŝx (â† − â) +

4g̃2

Nωc
Ŝx2. (1.14b)

The coupling strengths appearing in these equations are defined as ḡ ≡ (ωa/ωc)1/2g
and g̃ ≡ (ωc/ωa)1/2g, where

g ≡

√
ωaN

2~ε0εbg
|d1,0 · ψ (zQW) |. (1.15)

Here zQW is the z position of the QW. We find that in the velocity form, since
ḡ ∝ ωa, the coupling strength is larger for a higher subband, which is usually
neglected due to truncation in simple analyses. Then, the matter-level truncation
is crucial in the velocity form, and the length form, where g̃ is independent of
ωa, usually shows better convergence.

Using the sum rule, Eq. (1.8), we can show that D > ḡ2/ωa, where D is
the coefficient of the A2 term (see Garziano et al. (2020) for more details).
The existence of a lower bound for the value of D is an important issue in the
discussion of no-go theorems for the superradiant phase transition, as we discuss
in Sect. 1.2.3.

In the limit of weak excitation (linear optical response), we can bozonise the
spin operators through theHolstein–Primakoff transformation [Emary&Brandes
(2003b,a)], i.e., Ŝz → b̂†b̂−N/2, Ŝ+ ≡ b̂†(N − b̂†b̂)1/2, and Ŝ− ≡ (N − b̂†b̂)1/2b̂.
In the lowest-order transformation, we get

Ĥv/~→ ωcâ†â + ωab̂†b̂ + ig(â† + â)(b̂† − b̂) + D(â† + â)2, (1.16a)

Ĥl/~→ ωcâ†â + ωab̂†b̂ + ig̃(â† − â)(b̂† + b̂) +
g̃2

ωc
(b̂† + b̂)2. (1.16b)

By solving the Heisenberg equations of the latter Hamiltonian (length form), we
can obtain the resonance frequencies, ω, of the system as

ωc
2

ω2 = 1 +
4g2

ωa2 − (ω + i0+)2 . (1.17)

From this, we get two positiveω that correspond to the lower and upper polariton
frequencies. As we show in Sect. 1.2.1.3, the second term on the right-hand side
corresponds to the optical susceptibility. By replacing 0+ with a matter damping
rate, γ/2, andωc withωc − iκ/2 (cavity loss rate κ), we can phenomenologically
introduce the effect of dissipation (line broadening).
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Note that the two forms of the ISBT Hamiltonian, Eqs. (1.16), are equivalent
to each other. They are related through a unitary transformation. Therefore,
Eq. (1.17) can also be obtained from Eq. (1.16a), i.e., the Hamiltonian in the
velocity form. However, this is possible only if we can set D = ḡ2/ωa, i.e., if the
oscillator strength is concentrated to the two levels. However, such a truncation
procedure cannot be justified in most cases in the velocity form. For more
detailed studies of the ISBT Hamiltonian, see a series of papers by Todorov &
Sirtori (2012), Todorov (2014), and Todorov & Sirtori (2014).

1.2.1.3 Optical phonons and excitons in bulk semiconductors
In this subsection, we consider optical phonons and excitons in bulk semicon-
ductors that exhibit USC with light [Hopfield (1958), Bamba & Imoto (2016)].
While excitons are not pure bosons, they can be treated as bosons in the weak
excitation limit [Combescot et al. (2008)]. In the same manner as in the ISBT
case, focusing on just one excitation level, we can express the Hamiltonian in
two different forms:

Ĥv

~
≈

∑
k

×

[
v |k |â†

k
âk + ωa,k b̂†

k
b̂k + ḡk (â†

−k
+ âk )(b̂†

k
+ b̂−k ) + Dk (â†

−k
+ âk )(â†

k
+ â−k )

]
,

(1.18a)

Ĥl

~
≈

∑
k

×

[
v |k |â†

k
âk + ωa,k b̂†

k
b̂k + ig̃k (â†

−k
− âk )(b̂†

k
+ b̂−k ) +

g̃k
2

v |k |
(b̂†
−k
+ b̂k )(b̂†

k
+ b̂−k )

]
.

(1.18b)

Here, the coupling strengths are defined as ḡk ≡ [ωa/(v |k |)]1/2gk and g̃k ≡

(v |k |/ωa)1/2gk for gk ≡
√
ωa,k ρ/(2~ε0εbg) |d1,0 | and particle density ρ. The

coefficient of the A2 term satisfies Dk > ḡk
2/ωa,k . From the Heisenberg equa-

tions (for Dk = ḡ2
k
/ωa,k in the velocity form), we get the following dispersion

relation determining the resonance frequency, ω, as [Hopfield (1958)]

v2 |k |2

ω2 = 1 +
4g2

ωa,k 2 − (ω + i0+)2 . (1.19)

The right-hand side corresponds to the dielectric function divided by εbg, and
the second term corresponds to the optical susceptibility. We can rewrite its
numerator as 4g2 = f1,0ωplasma

2/εbg with the oscillator strength f1,0 and the
plasma frequency ωplasma ≡

√
e2ρ/(mε0). For a fixed k , we can find two

positive ω, which correspond to the lower and upper polariton frequencies.
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1.2.1.4 Cyclotron resonance (or inter-Landau-level transitions)
In this subsection, we describe CR (or ILLTs) in a 2DEG interacting with cavity
photons in theUSC regime. We consider theHamiltonian Ĥv only in the velocity
form, Eq. (1.4), since the calculation is simpler than in the length form. Due to
Kohn’s theorem [Kohn (1961)], we need not consider the Coulomb interaction
V̂ for discussing linear optical responses.

We have two separate electromagnetic fields in this problem – (i) a DC
magnetic field BDC = ∇ × ADC represented by a static vector potential ADC and
(ii) a dynamical electromagnetic field described by a dynamic vector potential
A(t). We include the former contribution to the matter Hamiltonian Ĥmat. Then,
the matter system is the 2DEG in a DC magnetic field along the z direction as
Ĥmat =

∑N
i=1

∑
ξ=x,y π̂i,ξ

2/(2m). Here, we defined π̂i ≡ p̂i+eADC. N = ρ2DEGS
is the total number of electrons, when the surface density of the 2DEG is ρ2DEG.

Introducing the CR frequency ωcyc = e|BDC |/m and the lowering oper-
ator ĉi ≡ (π̂i,y + iπ̂i,x )/

√
2m~ωcyc between Landau levels (LLs) satisfying

[ĉi, ĉ†j ] = δi, j [Yoshioka (2002)], the matter Hamiltonian is rewritten as Ĥmat =∑N
i=1 ~ωcyc(ĉ†i ĉi+1/2). Note that CR excitations (i.e., ILLTs) are purely bosonic

excitations, and matter levels are not truncated at this stage. Then, the truncation
problem does not arise even in the velocity form. In the following, we consider
only a bosonic operator b̂ ≡

∑N
i=1 ĉi/

√
N of the collective excitation mode of the

2DEG coherently interacting with the electromagnetic field [Li, Bamba, Zhang,
Fallahi, Gardner, Gao, Lou, Yoshioka, Manfra & Kono (2018), Bamba et al.
(2019)]. Since the other collective modes are dark (their oscillator strengths are
zero) for photons with zero in-plane wavevector, we can truncate such modes,
and the matter Hamiltonian is approximated as Ĥmat ≈ ~ωcycb̂†b̂ + const.

As for photons, for simplicity, we focus on only one cavity resonance
frequency ωc but explicitly consider the two circular polarizations ξ = ±.
We define the annihilation operator of the ± circularly polarized photon as
â± ≡ (âx ∓ iây )/

√
2, where âx/y is that of the linearly polarized photon in the

x/y direction. Then, when we define the coupling strength as ḡ ≡ (ωcyc/ωc)1/2g
and g ≡ [e2ρ2DEG/(2ε0εbgm)]1/2ψ(z2DEG) for the position, z2DEG, of the 2DEG
inside the cavity, the total Hamiltonian is obtained from Eq. (1.7a) as

Ĥv ≈
∑
ξ=±

~ωcâ
†

ξ âξ + ~ωcycb̂†b̂ + i~ḡ
[
b̂†(â+ + â†−) − (â− + â†+)b̂

]

+
~ḡ2

ωcyc
(â− + â†+)(â+ + â†−). (1.20)

In this way, the CR excitation b̂ interacts with the co-circularly polarized pho-
ton â+ in the co-rotating manner as i~g(b̂†â+ − â†+b̂), while it interacts with
the counter-circularly polarized photon â− in the counter-rotating manner as
i~g(b̂†â†− − â−b̂).

By solving the Heisenberg equations of motion, the resonance frequencies,
ω±, of the coupled modes (polariton modes) with the ± circular polarization can
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be obtained as

ωc
2

ω±2 = 1 −
2g2

ω±(ω± ∓ ωcyc + i0+)
. (1.21a)

More detailed calculations can be found in Li, Bamba, Zhang, Fallahi, Gardner,
Gao, Lou, Yoshioka, Manfra & Kono (2018) and Bamba et al. (2019).

1.2.2 Virtual photons and two-mode squeezed vacuum

As pointed out by Ciuti et al. (2005), owing to the presence of the CRTs, the
expectation value of the number of photons, 〈g|â†â |g〉, is nonzero even in the
ground state |g〉 in the USC regime. Such photons are called virtual photons.
It has been theoretically suggested that the ground state of the light–matter
coupled system (polariton system) is expressed as a two-mode squeezed vacuum
state of the original photon and excitationmodes [Artoni &Birman (1989, 1991),
Schwendimann&Quattropani (1992a,b), Quattropani& Schwendimann (2005)]
(a similar discussion has been given for nondispersive dielectric media [Abram
(1987), Glauber&Lewenstein (1991)]). Virtual photons (and virtual excitations)
compose such an intrinsic squeezed vacuum. The number of virtual photons and
degree of squeezing become a considerable value in the USC regime. While the
vacuum BS shift [Bloch & Siegert (1940)] has been clearly demonstrated as a
hallmark of the CRTs in the CR system by Li, Bamba, Zhang, Fallahi, Gardner,
Gao, Lou, Yoshioka, Manfra & Kono (2018), the presence of virtual photons
has not yet been proven experimentally. Since the early studies of USC by Ciuti
et al. (2005), many proposals for observing virtual photons have been reported.

One of the main strategies is dynamically modulating the coupling strength
g(t) or other parameters, by which photons or photon pairs are emitted from the
cavity to the outside world [De Liberato et al. (2007), Dodonov et al. (2008),
De Liberato et al. (2009), Garziano et al. (2014), Shapiro et al. (2015)]. Such
radiation is called quantum vacuum radiation, and the emission process is similar
to the dynamical Casimir effect [Moore (1970)]. The modulation frequency
should be of the order of the resonance frequencies, and such an experiment has
been demonstrated in superconducting circuits [Wilson et al. (2011)].

For more explicit evidence of the presence of virtual photons, one can sud-
denly turn off the coupling, making g zero. Then, the virtual photons can escape
from the cavity, and the correlation functions of those emitted photons should re-
flect the state of the virtual photons in the ground state [Ashhab & Nori (2010),
Auer & Burkard (2012), Garziano et al. (2013), Hagenmüller (2016)]. Such
schemes have been proposed for ISBT polaritons [Auer & Burkard (2012)] as
well as for Landau polaritons [Hagenmüller (2016)].

As shown in Fig. 1.4(a), spontaneous emission of virtual photons has been
proposed by Stassi et al. (2013, 2016) by considering a three-level system embed-
ded in a cavity, which is similar to the ISBT system (two conduction subbands
and one valence subband) [Günter et al. (2009)]. When the transition between
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FIGURE 1.4 Sketches of virtual photon emission processes. Virtual photons are re-
leased as real photons through (a) spontaneous emission in a three-level system and
(b) ground state electroluminescence.

the two excited levels is ultrastrongly coupled with the cavity mode, the virtual
photons are emitted by the spontaneous relaxation of the carrier to its most sta-
ble level, because the USC diminishes due to the disappearance of the carrier
from the above two levels. In a similar system but with driving between the
lower two levels (e.g., between a conduction subband and a valence subband),
the (stimulated) emission of virtual photons has been proposed [Carusotto et al.
(2012), Huang & Law (2014), Stefano et al. (2017)].

Further, in a two-level or two-(sub)band system embedded in a cavity, as
shown in Fig. 1.4(b), as carriers pass through just one of the levels or (sub)bands,
the emission of photons is expected while the carriers escape from the system
(and then the light–matter coupling diminishes). It is called ground state elec-
troluminescence [Cirio et al. (2016, 2019)]. It has also been proposed that the
signature of virtual photons can be observed as the Lamb shift of an ancillary
probe qubit coupled to the ultrastrongly coupled system [Lolli et al. (2015)].
Further, time-modulated optomechanical coupling has also been proposed by
Cirio et al. (2017) for amplifying a mechanical probe of virtual photons.

1.2.3 Superradiant phase transition

Hepp & Lieb (1973) showed that there exists a second-order phase transition in
a system of N two-level atoms (with resonance frequency ωa) interacting with a
single mode of light (with frequency ωc) described by

ĤDicke/~ ≡ ωcâ†â + ωa

(
Ŝz +

N
2

)
+

2ḡ
√

N
(â† + â)Ŝy . (1.22)

Wang &Hioe (1973) also showed the existence of such a phase transition using a
different, simpler method. The aboveHamiltonianwas first used byDicke (1954)
in the context of superradiance, and the predicted phase transition has come to
be known as the superradiant phase transition (SRPT) or Dicke phase transition.
In the thermodynamic limit (N → ∞), the condition for the superradiant phase
to arise is ḡ2 > ωcωa/4, i.e., the SRPT occurs in the USC regime; see Fig. 1.5.
Below a critical temperature, the expectation values of the photon annihilation
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operator 〈â〉 and spin operator 〈Ŝy〉 become finite, signaling a spontaneous
appearance of an electromagnetic field and polarization (or electric current) in
thermal equilibrium.

0 0.5 1 1.5
0

1

2

3

4

0

0.5

1

Coupling strength g / ω0

Te
m

pe
ra

tu
re

 k
BT

 / 
ħω

0
Photon am

plitude 〈â〉 / N
1/2

FIGURE 1.5 Phase diagram for the superradiant phase transition predicted by Hepp
& Lieb (1973) and Wang & Hioe (1973). The superradiant phase exists in the shaded
area, where a finite electromagnetic field and polarization arises in thermal equilibrium.

However, Rzażewski et al. (1975) pointed out that the A2 term, D(â† +
â)2, is neglected in the above Hamiltonian used by Hepp & Lieb (1973); see,
e.g., Eq. (1.14a) for the full Hamiltonian for ISBTs including the A2 term.
Rzażewski et al. (1975) showed that the A2 term becomes an additional energy
cost and prevents the SRPT. In the case of the length form, Eq. (1.14b), it can
be shown that the P2 term (instead of the A2 term) prevents the SRPT [Yamanoi
& Takatsuji (1978)]. The importance of the A2 or P2 term in the USC regime
has been extensively discussed in relation with the gauge invariance [Woolley
(1976), Yamanoi (1976), Yamanoi & Takatsuji (1978), Keeling (2007), Vukics
& Domokos (2012), Vukics et al. (2014), Bamba & Ogawa (2014), Vukics et al.
(2015), Grießer et al. (2016)]. The influence of gauge choice on the SRPT has
also been discussed by Stokes & Nazir (2019c).

Through a Bogoliubov transformation, â′ ≡ (â + ζ â†)/
√

1 − ζ2, with ζ ≡
(
√

1 + 4D/ωc − 1)/(
√

1 + 4D/ωc + 1), we can eliminate the A2 term, and thus,
Eq. (1.14a) can be transformed to Eq. (1.22), with replacing â → â′, ωc →
ω′c ≡

√
ωc(ωc + 4D), ḡ → ḡ′ ≡

√
(1 − ζ )/(1 + ζ )ḡ. However, ḡ′2 > ω′cωa/4

cannot be satisfied for D > ḡ2/ωa, which is obtained by the sum rule, Eq. (1.8).
Thus, the presence of the A2 term itself does not prevent the SRPT, but the
minimummagnitude of its coefficient (set by the TRK sum rule) does. A similar
calculation can be performed also for the P2 term.

Starting from the minimal-coupling Hamiltonian Ĥv , Eq. (1.4), without trun-
cation of matter levels nor photonic modes (performed for deriving Eq. (1.22)),
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a more general no-go theorem was suggested by Knight et al. (1978) through
classical treatment of the electromagnetic fields and polarization. Furthermore,
through quantum treatment of the matter but classical treatment of the elec-
tromagnetic fields, more general no-go theorems were proposed in the long-
wavelength approximation by Bialynicki-Birula & Rzażewski (1979) and in a
more general case by Gawȩdzki & Rza̧źewski (1981). The classical treatment
of the electromagnetic fields can be justified under some conditions, as shown
by Bamba & Imoto (2017).

Since the no-go theorem has not yet been completely proven even for the
minimal-coupling Hamiltonian, proposals of counterexamples and indications
of calculation mistakes have been repeated. For example, longitudinal dipole-
dipole interaction [Keeling (2007), Vukics et al. (2014), Bamba&Ogawa (2014),
Vukics et al. (2015)], graphene [Hagenmüller & Ciuti (2012), Chirolli et al.
(2012)], and the excitonic insulator [Mazza & Georges (2019), Andolina et al.
(2019), Nataf et al. (2019)] have been discussed. Currently, the possibility of
the SRPT by a short-range depolarizing interaction between atoms proposed by
Grießer et al. (2016) has not been denied yet.

In a driven-dissipative situation, a scheme for implementing the Dicke model
with ḡ > ωcωa/4 was proposed by Dimer et al. (2007). A SRPT-like transition
(a nonequilibrium critical phenomenon) was experimentally demonstrated in
cold atoms driven by laser light by Baumann et al. (2010). They were able to
tune the coupling strength, ḡ, by changing the power of the laser light, and the
transition was observed by the change in ḡ. While it was not driven by quantum
fluctuations [Larson & Irish (2017)], the transition was called a “quantum”
phase transition since the coupling term with the tunable ḡ was not commutable
with the rest of the Hamiltonian terms. In thermal equilibrium, the SRPT has
not been observed. While softening (lowering) of a resonance frequency has
been experimentally observed in a CR system by Keller et al. (2020), it remains
unclear whether it is a SRPT signature.

As pointed out by Knight et al. (1978), for systems beyond the minimal-
coupling Hamiltonian, we can circumvent the above-mentioned no-go theorems
even in thermal equilibrium. A SRPT analogue in superconducting circuits has
been discussed by Nataf & Ciuti (2010), Viehmann et al. (2011), Ciuti & Nataf
(2012), and Jaako et al. (2016), and one proposal by Bamba et al. (2016) has
not been repudiated. Further, a 2DEG with Rashba spin-orbit coupling has been
proposed by Nataf et al. (2019), which has also not been invalidated. To date,
no-go theorems have not been proposed for magnetic materials.

1.2.4 Predictions for materials beyond semiconductors

USC between light and various types of quasiparticles in semiconductors has
been demonstrated experimentally, as discussed in detail in Sect. 1.3. In this sub-
section, we focus on recent theoretical proposals predicting fascinating cavity-
enabled phenomena in quantummaterials beyond traditional semiconductors. In
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particular, some of the recent proposals on cavity control of properties of mate-
rials such as superconductors, excitonic insulators, Mott insulators, topological
insulators, and other quantum materials are reviewed.

1.2.4.1 Superconductors in cavities

FIGURE 1.6 Enhancement of superconductivity through the cavity quantum Eliash-
berg mechanism proposed by Curtis et al. (2019). (a) Relative enhancement of the gap
function as a function of cavity frequency ω0. Curves are colored and labeled according
to the ratio between the photon and quasiparticle temperatures. Enhancement is seen to
set in after the cavity frequency surpasses the pair-breaking energy, 2∆0. (b) Schematic
picture of the system used for the calculation. The lowest cavity resonator mode with
cutoff frequency ω0 is shown, as is the 2D superconducting layer. (c) Depiction of var-
ious processes that contribute to the quasiparticle collision integral, plotted against the
equilibrium quasiparticle distribution n(E). The blue arrows depict the down-scattering
terms captured by f (Ω, E), the red arrows depict the up-scattering terms captured by
f (−Ω, E), and the green arrows represent the pair processes captured by f (−Ω,−E).

Superconductivity is one of the fascinating macroscopic manifestations of
quantum mechanics. A superconducting state, exhibiting zero resistance and
expelling of magnetic fields, occurs below a critical temperature, Tc. There are
currently many efforts to control superconducting properties of materials, partic-
ularly their Tc. For example, through a static external stimulus such as pressure,
the Tc of a material has been raised to 250 K [Drozdov et al. (2019)]. Another
approach is based on light illumination, especially utilizing femtosecond laser
pulses [see, e.g., Kaiser (2017)]. Nonequilibrium, light-driven superconductiv-
ity and Eliashberg enhancement of superconductivity are usually carried out in
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free space with an external light source. Light-matter interactions in cavities in
the USC regime offer another exciting method for modifying superconductivity
properties. There have been several theoretical studies on physical mechanisms
affecting superconductivity properties driven by vacuum fluctuations in cavities,
as described in the following.

Curtis et al. (2019) studied a 2D BCS superconductor placed in single-mode
and multimode cavities. The physical picture is based on the Eliashberg ef-
fect [Eliashberg (1970)], i.e., a redistribution of the quasiparticles into a more
favorable nonthermal distribution due to an applied electromagnetic field, which
was generalized to include both quantum and thermal fluctuations. An enhance-
ment of the superconducting gap by a few percent was predicted; see Fig. 1.6.
Cavity Bardasis-Schrieffer mode polaritons and cavity Higgs polaritons were
also predicted to exist. The Bardasis-Schrieffer modes are exciton-like states of
the superconducting order parameter [Allocca et al. (2019)], while Higgs po-
laritons are hybridized states between cavity photons and the amplitude mode of
a superconductor [Raines et al. (2020)]. Although none of these modes couple
linearly to light, they can be observed and controlled by applying a super-current
or observed with THz near field techniques [Sun et al. (2020)].

In another study, Sentef et al. (2018) performed Migdal-Eliashberg simula-
tions to explore modifications of electron-phonon interactions arising from the
formation of phonon polaritons at the 2D interface of FeSe/SrTiO3. The ob-
served enhancement in the electron-phonon coupling constant, however, did not
result in an enhancement of Tc for the forward-scattering pairing mechanism.
This negative effect was explained by the quasilinear dependence of Tc on the
electron-phonon coupling constant in their model in contrast to BCS exponential
scaling. Most recently, there has been an experimental study reporting a 50%
increase of Tc in a BCS-type superconductor (Rb3C60) coupled to surface plas-
mon polaritons (SPPs) while showing decreasing Tc for YBa2Cu3O7−x [Thomas
et al. (2019)]. In this study, a powder of superconductors was embedded in a
polymer matrix and placed on a gold mirror. Qualitatively, the enhancement of
Tc is attributed to cooperative SC between phonons in the superconductor and
the surface plasmon polaritons via an auxiliary coupler (polymer).

Schlawin et al. (2019) have predicted superconductivity in a semiconductor
2DEG induced by USC with THz cavity photons. By using realistic parameters
of a GaAs 2DEG inside a THz cavity, they predicted that superconductivity
with Tc in the low-Kelvin regime should be realized. Virtual photons, in this
case, act as the glue for pairing [Schlawin et al. (2019)]. Moreover, in a similar
setting, Gao et al. (2020) predicted that driving the cavitymight stabilize electron
pairing even at higher temperatures. Clearly, cavity QED offers a variety of novel
approaches to both manipulation of superconducting materials and investigation
of physics behind high-Tc superconductivity.
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1.2.4.2 Quantum materials in cavities

Asdescribed in Sect. 1.2.3, theDicke SRPT is one of themost profound collective
phenomena in quantum optics. If it is realized in a solid in equilibrium, e.g.,
a 2DEG [Hagenmüller & Ciuti (2012), Nataf et al. (2019)], it can lead to real-
world applications of macroscopic quantum coherence. For so-called quantum
materials, which host a plethora of collective phases [Tokura et al. (2017)], novel,
emergent light-matter collective phenomena have been proposed. Because of the
interplay between short-range electrostatic interactions and the nonperturbative
coupling to a common cavity mode, several new phases that do not have direct
counterparts in the collective Dicke models or solid state spin systems have been
shown to exist through numerical calculations by Schuler et al. (2020).

Another example is the superradiant excitonic insulator (SXI), studied by
Mazza&Georges (2019). Figure 1.7 shows its phase diagram as a function of the
strength of electronic interactions, U, and the light-matter coupling strength, g.
The SXI phase is characterized by equilibrium superradiance in the photon field
and condensation of excitons in the electronic system happening simultaneously.
However, this conclusion is disputed, since the model used by Mazza & Georges
(2019) does not guarantee gauge invariance, as pointed out by Andolina et al.
(2019) and Nataf et al. (2019).

More recently, Ashida et al. (2020) studied the possibility of observing a
SRPT in systems that are naturally close to a spontaneous electric polarization
phase. They considered a quantum paraelectric material sandwiched between
metallic cladding layers acting as cavity mirrors. In contrast to previous stud-
ies, the polariton excitations consist of infrared active phonons in the quantum
paraelectric, electromagnetic fields in the cavity, and plasmons in the metallic
electrodes. Hence, the enhancement of the ferroelectric phase in quantum para-
electric materials due to cavity-induced optical phonon softening is predicted.

In general, cavities offer novel ways to manipulate and control material prop-
erties. In addition to the proposals mentioned above, other examples include
manipulation of macroscopic magnetic and electronic properties of strongly cor-
related electron systems [Kiffner et al. (2019)], nonlinear phononics [Juraschek
et al. (2019)], control of excitonic optical spectra of van der Waals materials and
heterostructures [Latini et al. (2019)], and QED Chern insulators [Wang et al.
(2019)]. Figure 1.8 demonstrates an opening of an energy gap when mono-
layer graphene is placed into a cavity, predicted by Wang et al. (2019). Here,
photon-dressed Dirac fermions show a quantized Hall response with predicted
conductance of 2e2/h that can be characterized by an integer Chern number.
Overall, the burgeoning field of condensed-matter cavity QED promises the dis-
coveries of new fascinating physics, in addition to those discussed in the next
section, paving the way for unprecedented control of material properties.
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FIGURE 1.7 Phase diagram for interacting electrons strongly coupled with cavity
photons proposed by Mazza & Georges (2019). A superradiant excitonic insulator
phase exists at certain strengths of electron-electron interactions, U, and light-matter
coupling, g. The red and blue intensities reflect band populations. In the metal region
(red), both orbitals are occupied, whereas in the semiconductor region (blue) only the
valence band is completely filled.
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FIG. 1. Two-dimensional (2D) material inside a chiral cavity.
(a) Setup for 2D graphene between cavity mirrors a distance λ/2
apart, where λ is the wavelength of the fundamental cavity photon
mode. The red spiral indicates the circular photon polarization. The
2D material is encapsulated in a dielectric medium (glassy region).
(b) Dirac cone of a 2D Dirac material at electron-photon coupling
g = 0. (c) Energy gap � due to time-reversal symmetry breaking for
g > 0.

we have assumed an infinitely extended cavity in the x-y plane
for simplicity. For a single two-dimensional spinless Dirac
fermion with Fermi velocity vF , we have γ (�k) = h̄vF (kx +
iky). Notice that the A2 term that usually appears for massive
charged particles minimally coupled to a gauge field is absent
for the massless Dirac fermions considered here.

Using a right-handed circularly polarized cavity reduces
the photon field to a single branch with �eλ ≡ �e, operators a†

λ ≡
a†, and frequency ωλ ≡ ω, with unit polarization vector �e =

1√
2
(1, i). In this case, γ (�k − �̂A) → h̄vF (kx + iky − √

2A0a†)
in Eq. (1).

In the following, we investigate the photon dressing effects
on the electronic structure by means of many-body pertur-
bation theory using Matsubara Green’s functions. To lowest
order in the effective electron-photon coupling strength g ≡
vF A0

√
2, we obtain the zero-temperature, energy-dependent

retarded electronic self-energy at the Dirac point �k = 0
within the non-self-consistent first Born approximation (see
Appendix) as

�R
0,aa(�k = 0, ε) = g2/2

ε + i0+ − ω
, (3)

�R
0,bb(�k = 0, ε) = g2/2

ε + i0+ + ω
, (4)

where aa and bb refer to the intra-sublattice self-energies on
sublattices A and B, respectively.

The relevant quantity to analyze renormalizations of the
electronic structure due to light-matter coupling is the elec-
tronic single-particle spectral function

A(k, ε) = − 1

π
ImTrĜR(k, ε), (5)

obtained from the retarded Green’s function on the real-
energy axis, which is related to the self-energy via the Dyson
equation ĜR,−1(k, ε) = ĜR,−1

0 (k, ε) − �̂R(k, ε). In the fol-
lowing, we discuss both the non-self-consistent, lowest-order
self-energies �0 ∝ g2G0D0 with bare electron (G0) and pho-
ton (D0) propagators, as well as electronically self-consistent

� ∝ g2GD0 (see Appendix for details) with dressed electronic
Green’s function G obtained from the Dyson equation. The
equations for �[G] and G[�] are solved self-consistently until
convergence is reached. We neglect dressing of the photon
propagators within this work, as its main effect is a slight
renormalization of the photon frequency and an acquisition
of a finite photon lifetime. In particular, the photon renor-
malization leads to a correction of order g4 to the electronic
self-energy. As we are interested here in the realistic scenario
of weak light-matter coupling, we expect that these effects
will be small and will not qualitatively affect our results and
conclusions.

Considering the lowest-order self-energy at the Dirac point
�̂R(k = 0, ε) → �̂R

0 (k = 0, ε) from Eqs. (3) and (4), we find
that A(k = 0, ε) acquires an energy gap � =

√
2g2 + ω2 − ω.

In the limit 2g2/ω2 � 1, we obtain � ≈ g2

ω
= 2h̄2v2

F A2
0

ω
. This

result is in remarkably close formal analogy with the Floquet
high-frequency expansion [14] when the quantum photon am-
plitude A0 is replaced by the field strength A0 of the classical
vector potential.

In order to estimate the coupling strength in a realis-
tic device, we consider graphene encapsulated in hexagonal
boron nitride with dielectric constant ε ≈ 7 for in-plane light
polarization inside a plasmonic cavity. We obtain g[eV] =
(h̄vF )[eVa0]

√
4αλ/(εV ) and use the effective cavity volume

V = 2.5 × 10−5 × (λ/(2
√

ε))3 [37,50] with the photon wave-
length λ being twice the cavity size in z direction. Lengths are
measured in units of the graphene interatomic distance a0 =
1.42 Å, h̄vF = 4.2 eVa0, and α ≈ 1/137 is the fine structure
constant. With these values we obtain g ≈ 0.0077 eV for ω =
0.1 eV (cavity size 6.2 μm) and g ≈ 0.023 eV for ω = 0.3 eV
(2.07 μm). Since these values are still safely in the weak-
coupling regime the corresponding energy gaps are given by
g2/ω and take values of 0.00059 and 0.0018 eV, respectively.

One remark is in order here. The Hamiltonian in Eq. (1)
is not gauge-invariant. In order to fix this issue, one could
for example start from a tight-binding Hamiltonian on a
honeycomb lattice and add the vector potential via Peierls
substitution, which results in complex phase factors to the
hopping amplitudes. The Dirac-fermion theory in Eq. (1) is
then the low-energy limit of the lattice theory obtained from
a Taylor expansion around the Dirac points. In this case,
one obtains corrections to the Dirac Hamiltonian that are
nonlinear in the photon fields and are at least of order g2 in
the light-matter coupling. The diagrammatic corrections to the
self-energy are of order g4/ω3 = g2/ω2 × (g/ω)2, which
become important when g/ω is not significantly smaller than
unity. In what follows, we argue that these corrections should
not invalidate our results for realistic estimates of g, which
always fulfill g/ω � 1. We will show some illustrations of
stronger-coupling effects below, and one should keep in mind
that these effects might see quantitative corrections from
nonlinear light-matter couplings.

We go beyond the lowest-order perturbation theory by
numerically solving for the self-consistent self-energy � on
the Matsubara frequency axis and obtain the real-frequency
self-energy by Padé approximants [51]. We checked our pro-
cedure against the closed-form analytical continuation result
for the non-self-consistent case.
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FIGURE 1.8 2Dmaterial inside a chiral cavity studied byWang et al. (2019). (a) Setup
for monolayer graphene between cavity mirrors a distance λ/2 apart, where λ is the
wavelength of the fundamental cavity photon mode. The red spiral indicates the circular
photon polarization. The 2D material is encapsulated in a dielectric medium (glassy
region). (b) Dirac cone of a 2D Dirac material at electron-photon coupling g = 0.
(c) Energy gap ∆ due to time-reversal symmetry breaking for g > 0.
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1.3 EXPERIMENTAL DEMONSTRATIONS OF ULTRASTRONG COU-
PLING

Diverse experimental platforms have emerged during the last decade that ex-
hibit USC. These systems include not only traditional light-matter hybrid sys-
tems, such as exciton and phonon polaritons in bulk semiconductors, but also
intraband transitions (ISBTs and CR), plasmons, phonons, and magnons in low-
dimensional systems. In this section, we review some of the pioneering studies
as well as the latest experimental observations of USC in these systems.

1.3.1 Intraband transitions

FIGURE 1.9 Cavity polaritons based on intraband transitions in semiconductor
quantum wells. (a) ISBTs resonantly coupled at a rate g to a light field ~E polarized
along the growth (z) direction. (b) CR, or ILLTs, coupled to a light field ~E polarized
in the quantum well (x-y) plane. A DC magnetic field BDC applied along the growth
(z) direction quantizes the in-plane (x-y) motion into discrete states (Landau levels) with
energy separation ~ωcyc.

1.3.1.1 Intersubband-plasmon polaritons
ISBTs, also known as ISB plasmons, are defined as resonant optical transitions
between two subbands within the conduction or valence band of a semiconductor
QW [see, e.g., Helm (2000) and Paiella (2006)]. They occur at low photon ener-
gies, typically in the MIR or THz range, with enourmous dipole moments [West
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&Eglash (1985)], which have been advantageously utilized to achieveUSC [Dini
et al. (2003), Dupont et al. (2003), Anappara et al. (2005, 2006, 2007), Dupont
et al. (2007), Sapienza et al. (2007, 2008), Todorov et al. (2009), Anappara et al.
(2009), Günter et al. (2009), Geiser et al. (2010), Todorov, Andrews, Colombelli,
De Liberato, Ciuti, Klang, Strasser & Sirtori (2010), Zanotto et al. (2010), Jouy
et al. (2011), Geiser et al. (2012), Porer et al. (2012), Zanotto et al. (2012),
Delteil et al. (2012), Dietze et al. (2013), Askenazi et al. (2014, 2017), Laurent
et al. (2017), Jeannin et al. (2019)]. An ISBT is a plasmon excitation because it
is a collective response of a 2DEG in the QW to a resonant light field, polarized
along the growth (z) direction, with transition frequency ~ω12; see Fig. 1.9a. In
contrast to interband transitions, whose optical properties are largely determined
by the fixed band gap energy of the semiconductor, the use of band-structure
engineering provides ISBTs with ample tunability of the transition frequency
and oscillator strength, which is of fundamental importance for quantum de-
vices like the quantum cascade laser [Faist et al. (1994)] and the QW infrared
photodetector [see, e.g., Choi (1997) and Schneider & Liu (2007)].

Much of the initial work on ISB plasmon microcavity-polaritons in the USC
regime (reviewed by Forn-Díaz et al. (2019)) was explored in the MIR range.
Todorov et al. (2009) successfully extended the range to the THz band using
a metal-dielectric-metal microcavity. This approach, schematically depicted
in Fig. 1.10a, realized subwavelength confinement without significant ohmic
losses, which led to USC with a large cooperativity value. Figure 1.10b shows
low temperature (4.5K) reflectivity spectra for different values of cavity detuning
with respect to the ISBT. A clear anticrossing behavior is observed for the lowest
cavity mode (K = 1). In Fig. 1.10c the two polaritons branches are plotted as
a function of inverse slit-width, 1/s, which determines 2g/2π = 0.8THz and
η = 0.11. Todorov, Andrews, Colombelli, De Liberato, Ciuti, Klang, Strasser
& Sirtori (2010) further increased the number of QWs to 25 and used a zero-
dimensional resonator to go deeper into the USC regime. The photonic structure
consisted of square-shaped microcavities formed by an array of metallic pads
above and a planar metallic plate below, as shown in Fig. 1.10d. Using this
configuration, the authors achieved 2g/2π = 1.41THz at 4.5K and a record high
value at that time for the normalized coupling strength: η = 0.24. In addition, it
was shown that the polariton splitting exhibited a nonlinear behavior arising from
the A2 term in the light-matter interaction Hamiltonian; see Fig. 1.10e. Finally,
the opening of a polaritonic gap of 330GHz was also observed by plotting the
polariton frequencies as a function of cavity frequency; see Fig. 1.10f.

Since 1 THz ∼ 4meV ∼ 50K, THz resonances in two-level (or two-subband)
systems are generally observable only at cryogenic temperatures. Geiser et al.
(2010) used parabolic QWs, which enables an observation of THz ISBTs even
at room temperature since the equally separated energy levels in this multi-
level system makes the resonance frequency and strength independent of the
electron distribution. The authors placed the QWs in an electronic feedback
microcavity resonator consisting of an inductor-capacitor circuit on top and a
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FIGURE 1.10 Intersubband-plasmon polaritons in metal-dielectric microcavities in
the USC regime at terahertz frequencies. (a) Schematic of the photonic structure
used by Todorov et al. (2009). Top: top view of the metallic lamellar grating. Bottom:
schematic of the geometry used for reflectivitymeasurements and side view of the grating.
(b) Reflectivity spectra at 4.5K for different values of the strip width parameter s. (c) Po-
lariton branches plotted as a function of inverse slit-width, 1/s. The lowest cavity mode
(K = 1) shows an anticrossing behavior with the ISBT. (d) Electron microscopy image
of the metal-dielectric-metal photonic structure used by Todorov, Andrews, Colombelli,
De Liberato, Ciuti, Klang, Strasser & Sirtori (2010). (e) LP and UP peaks (blue dots)
plotted as a function of the plasma frequency. The ISB plasmon energy is also plotted (red
triangles). Deviations from the linear approximation are clearly observed. (f) Polariton
resonances plotted as a function of cavity frequency. The opening of a polaritonic gap is
seen. Adapted from Todorov et al. (2009), Todorov, Andrews, Colombelli, De Liberato,
Ciuti, Klang, Strasser & Sirtori (2010), and Todorov, Tosetto, Teissier, Andrews, Klang,
Colombelli, Sagnes, Strasser & Sirtori (2010).
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gold ground plane below; see Fig. 1.11a. The cavity mode frequency was tuned
by varying the wire (i.e., inductor) length that connects the circular capacitive
elements. Figure 1.11b shows an anticrossing curve at 300K, together with an
ISBT spectrum (inset) and energy (horizontal gray line). The observed Rabi
splitting, 2g/2π = 0.96THz, corresponded to η = 0.14. Importantly, these
results were shown to be temperature-independent in the 10K – 300K range.

Furthermore, Geiser et al. (2012) studied the role of electron-electron inter-
actions in the USC regime. In a parabolic QW, due to Kohn’s theorem [Kohn
(1961), Brey et al. (1989)], the depolarization field is not expected to be a lim-
iting factor for η, since its effect is compensated by strong electron-electron
interactions. For a highly doped sample, the authors obtained 2g/2π = 2.4 THz,
corresponding to η = g/ω̃ = 0.27; see Fig. 1.11c. Here, ω̃ is the ISB plasmon
frequency, including electron-electron interaction effects. The authors used both
a single-particle model and an interacting electron model [Todorov, Andrews,
Colombelli, De Liberato, Ciuti, Klang, Strasser & Sirtori (2010), Ciuti et al.
(2005)] (see Fig. 1.11d) to fit the polariton frequencies. It was shown that even
though the different electron-electron interactions cancel out each other as a con-
sequence of Kohn’s theorem and lead to ω̃ = ω12, the plasma frequency remains
an important physical quantity in the USC regime, explaining the opening of a
polaritonic gap.

1.3.1.2 Landau polaritons (or cyclotron resonance polaritons)

A magnetic field applied in the growth (z) direction of a QW leads to the
quantization of the electronic orbital motion into a ladder of equally separated
LLs with a spacing ~ωcyc = eBDC/m∗, where e is the electronic charge, BDC
is the applied external magnetic field, and m∗ is the effective carrier mass (see
Fig. 1.9b) [see, e.g., Lax & Mavroides (1960), McCombe & Wagner (1975),
Kono (2001), Hilton et al. (2012)]. To couple with the optical transition between
the highest occupied and lowest unoccupied Landau levels, the THz electric
field polarization must be in the QW plane. From an experimental point of view,
realizing ILLTs is easier than ISBTs because normal incidence transmission
measurements can be made. In addition, since the resonance frequency of
ILLTs linearly depends on BDC, ample tunability of the transition frequency for
the matter subsystem can be achieved. In this subsection, we discuss some of
the seminal and most recent experimental studies in this field [Muravev et al.
(2011), Scalari et al. (2012, 2013), Muravev et al. (2013), Maissen et al. (2014),
Zhang, Lou, Li, Reno, Pan, Watson, Manfra & Kono (2016), Abdurakhimov
et al. (2016), Maissen et al. (2017), Bayer et al. (2017), Keller et al. (2017),
Paravicini-Bagliani et al. (2017, 2018), Li, Bamba, Zhang, Fallahi, Gardner,
Gao, Lou, Yoshioka, Manfra & Kono (2018), Keller et al. (2018), Rajabali et al.
(2019), Keller et al. (2020)].

Muravev et al. (2011) observed cavity polaritons in an AlGaAs/GaAs QW
structure using coplanar microresonators. These hybrid modes arose from the
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FIGURE 1.11 Intersubband plasmon polaritions in the USC regime at room tem-
perature and terahertz frequencies using parabolic semiconductor QWs studied by
Geiser et al. (2010) and Geiser et al. (2012). (a) Left: scanning electron microscopy
image of the cavity showing an array of inductor-capacitor resonators. Right: schematic
of the electronic microcavity coupled to the semiconductor QWs. (b) Anticrossing curve
at 300K. The frequencies of the reflection minima (red squares) are plotted as a function
of cavity frequency. Inset: ISB absorption spectrum at 300K. (c) Reflection spectra
from samples with different inductive lengths. The LP and UP branches as well as the
ISB absorption are indicated. (d) Polariton resonances (black dots) as a function of bare
cavity frequency, showing the opening of a polaritonic gap (grey shaded area). Solid and
dashed lines are a fit to experimental data using single-particle and interacting electron
models, respectively. The empty cavity frequency line and the ISB absorption (black
triangles) are also indicated. Adapted from Geiser et al. (2010) and Geiser et al. (2012).
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FIGURE 1.12 Hybrid plasmon-photonmodes in themicrowave transmission of copla-
nar resonators. (a) Observed anticrossing behavior between the photon modes of the
microresonator ( fN , N = 1, 2, ...) and the magnetoplasmon resonance (CR). Different
symbols correspond to different polariton modes. (b) Electron density (n) dependence of
the third polariton mode’s anticrossing. Curves can be seen shifting closer to the photon
dispersion line when the electron density is decreased. Inset: VRS (denoted as ∆F here)
as a function of polariton wavevector for two values of n. Dashed lines are theoretical
results. Adapted from Muravev et al. (2011).

USC betweenmagnetoplasmons (CR) in the 2DEG system and the photonmodes
of the microresonator. By placing the sample in a helium cryostat at the center of
a superconducting solenoid and performing microwave transmission measure-
ments as a function of BDC, the authors were able to resolve both of the mag-
netodispersion branches; see Fig. 1.12a. In addition, the advantages of working
with ILLTs was experimentally demonstrated as well, where by changing the
electron density or applying an external magnetic field the authors showed how
both the Rabi frequency and the dispersion of the cavity polaritons can be tuned
over a wide range of frequencies; see Fig. 1.12b.

Zhang, Lou, Li, Reno, Pan, Watson, Manfra & Kono (2016) studied a high-
mobility 2DEG placed at the center of a high-Q 1D photonic crystal cavity (PCC)
using THz magnetospectroscopy. The maximum value of the electric field was
located at the 2DEG position inside the cavity. The 1D PCC was fabricated
using a series of alternating dielectric materials with a large refraction index
contrast in the THz range. For this work, the authors used vacuum and Si slabs
as the low and high index of refraction materials, respectively. The contrast in
their indices reduced the number of layers needed to achieve a high-Q cavity to
just four [Yee & Sherwin (2009), Chen, Liu, Liu & Hong (2014)]. The authors
simultaneously achieved high values of cooperativity and coupling strength,
putting the system in the USC regime with η ∼ 0.1, C > 300, and Q ∼ 103.
This unique combination of parameters allowed the experimental observation
of Rabi oscillations in the time-domain traces, persistence of an ultrastrongly
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coupled state even when the detuning was off-resonant (see Fig. 1.13a,b), a
√

n
dependence of the VRS with the electron density, n, and a suppression of the
superradiant decay of CR [Zhang, Lou, Li, Reno, Pan, Watson, Manfra & Kono
(2016), Zhang, Arikawa, Kato, Reno, Pan, Watson, Manfra, Zudov, Tokman,
Erukhimova, Belyanin & Kono (2014)].

FIGURE 1.13 Cooperative USC of the ILLT of 2D electrons with photons in a high-Q
THz cavity. (a) LP and UP branches observed in the vicinity of the anticrossing region.
The applied DC magnetic field tunes the cyclotron frequency ωcyc with respect to the
(fixed) cavity mode frequency, ω0. Open circles are experimental data and color lines are
THz transmission spectra obtained from electromagnetic field simulations. (b) Zoom-in
of the dashed area shown in (a). Deviations from the cold cavity frequency limit persist
at negative magnetic fields and can be observed even for a large off-resonant detuning.
Adapted from Zhang, Lou, Li, Reno, Pan, Watson, Manfra & Kono (2016).

Paravicini-Bagliani et al. (2018) studied magnetotransport properties of a
2DEG coupled to a subwavelength electronic resonator in the USC regime. The
authors prepared two samples with different coupling strengths and resonant
frequencies (η = 0.2 and 0.3 andω0 = 205GHz and 140GHz, respectively) both
of which consisted of a Hall bar placed in the capacitive gap of a complementary
LC resonator; see Fig. 1.14a. The current was along the source-drain channel
(parallel to the x-axis direction, see Fig. 1.14b), and the longitudinal resistivity,
ρxx , was measured, as indicated in Fig. 1.14a. A significant reduction of the
amplitude of the Shubnikov-de Haas oscillations was observed (see Fig. 1.14c),
which was theoretically shown to arise from the strong interaction with the
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cavity’s vacuum field fluctuations [Bartolo & Ciuti (2018)]. In addition, the
authors measured the irradiation-induced change in ρxx by illuminating the
sample with a single-frequency, tunable, subterahertz source. The changes
observed in ρxx were strongly dependent on whether the filling factor, ν, was an
integer or half-integer; see Fig. 1.14d.

FIGURE 1.14 Magnetotransport in a 2DEG controlled by THz cavity photons.
(a) Sample: a Hall bar (center, grey) placed in the capacitive gap of a subwavelength
LC resonator (gold structure). (b) SEM image showing a y-z cut of the Hall bar and
the Ti/Au electronic resonator. (c) Shubnikov-de Haas oscillations for three samples (η
= 0, 0.2, and 0.3, respectively) showing a reduction of the modulation amplitude as the
coupling strength is increased. (d) Longitudinal resistance change ∆ρxx = ρilluxx − ρ

dark
xx

when illuminated with a narrow-band subterahertz source normalized to the irradiation
power Pirr. Strong dependence on the spectrum with the filling factor, ν, is observed.
Adapted from Paravicini-Bagliani et al. (2018).

Keller et al. (2020) studied Landau polaritons in highly nonparabolic 2DEGs
in the USC regime. The authors used InSb QWs and strained Ge QWs with
a nonparabolic heavy-hole band. The CR of the 2D electron or hole gas was
coupled to a THz metamaterial resonator that presented subwavelength confine-
ment of the electric field; see Fig. 1.15a. By increasing the coupling strength via
lithographical adjustment of the cavity mode to lower frequencies, the authors
were able to observe significant deviations from the standard Hopfield model
and a more consistent agreement of the data with a Hopfield model that had a
reduced diamagnetic term (A2 term); see Fig. 1.15b. Possible explanations of the
observed behavior include strain, spin-orbit coupling effects, nonparabolic band
dispersions, and the enhanced magnetic coupling in the system that arises from
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FIGURE 1.15 Landau polaritons in nonparabolic 2DEGs in the USC regime. (a) THz
transmission of a strained Ge QW at high filling factors as a function of BDC at 3K. Solid
cyan and magenta lines indicate the cavity frequency and CR of the QW, respectively.
The polariton dispersions are fit using a Hopfield model with a reduced diamagnetic (or
A2) term (solid green lines) and without it (solid blue lines). As BDC increases and the
CR becomes far-detuned, the cold cavity frequency limit is not recovered, and a LP gap
opening is observed. (b) Normalized UP and LP frequencies at the position of minimal
splitting plotted as a function of η. Solid blue lines indicate predictions by the Hopfield
model, which agree with the experimental results for the standard GaAs QWs and a
strain-relaxed Ge QW sample. Deviation from this model are seen for the strained Ge
QWs as η increases. Adapted from Keller et al. (2020).

the subwavelength electric field confinement. An open question from this work
is whether this method can be extended and used to realize the Dicke SRPT in
thermal equilibrium, which is expected to occur when the lower polariton branch
becomes gapless.

1.3.2 Plasmon-phonon polaritons

The coupling of collective motion of conduction electrons driven by external
electromagnetic waves and lattice vibrations results in a hybrid polariton, which
is a mixture of a plasmon polariton and a phonon polariton. Such plasmon-
phonon polaritons were first identified in doped bulk polar semiconductors as
a hybrid of longitudinal optical (LO) phonons and bulk plasmons. Later, the
advent of nanomaterials and nanophotonics has enabled confinement and ma-
nipulation of light to dimensions much smaller than the wavelength of light, i.e.,
beyond the diffraction limit. This has made plasmon-phonon polaritons tunable
and low-loss nano-objects useful for MIR and THz technology. Furthermore, in-
genious designs of nanophotonic cavities have pushed the coupling strength into
the USC regime, which has opened up new opportunities for plasmon-phonon
polaritons, such as control of chemical reactivity and quantum metrology with
high-resolution spectroscopy.

This subsection is organized as follows: a brief historical review of LO
phonon-plasmon coupling in doped polar semiconductors is presented, followed
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by several exciting examples of the coupling between SPPs and surface phonon
polaritons (SPhPs), which is uniquely manifested in nanophotonic structures and
nanomaterials. Finally, efforts to enhance the coupling strength into the USC
regime are reviewed.

1.3.2.1 Plasmon-phonon polaritons in bulk semiconductors

Polar semiconductors, such as GaAs, AlAs, and InAs, display a narrow high-
reflectivity spectral range that is referred to as the Reststrahlen band. This
range is bounded by the transverse optical (TO) and LO phonons, whose quan-
titative expression is characterized through the Lyddane-Sachs-Teller relation
(Fig. 1.16a) [Caldwell et al. (2015)]. As the free carrier concentration of these
semiconductors increases, the plasma frequency shifts toward higher frequen-
cies, approaching the LO phonon frequency. This causes a spectral blueshift and
a shallower slope of the LO phonon edge of the Reststrahlen band. The dielectric
function, ε(ω), is then modified through the addition of a Drude term describing
free carriers to the Lorentz term describing the TO phonon resonance. The
eigenfrequencies of supported longitudinal modes are the solutions to the equa-
tion ε(ω) = 0, and instead of a single LO phonon frequency, there are now two
solutions signaling the hybridization of plasmons and phonons. The theory of
plasmon-phonon polaritons [Yokota (1961),Varga (1965), Singwi&Tosi (1966)]
was verified in Raman scattering experiments of bulk doped GaAs [Mooradian
& Wright (1966), Mooradian & McWhorter (1967)]. Mooradian & Wright
(1966) provided a clear experimental demonstration of these coupled modes,
where anticrossing behavior of Raman lines was observed (Fig. 1.16b). Similar
avoid crossing behaviors were also observed in infrared reflectivity measure-
ments [Olson&Lynch (1969), Kukharskii (1973), Perkowitz &Thorland (1975),
Gaur (1976), Chandrasekhar & Ramdas (1980)] and many other doped bulk po-
lar semiconductors, such as AlGaAs [Kim & Spitzer (1979)], SiC [Klein et al.
(1972), Harima et al. (1995), Chafai et al. (2001)], CdTe [Perkowitz & Thor-
land (1975)], GaN [Kozawa et al. (1994)], InP [Artús et al. (1999)], InSb [Gaur
(1976)], and InAs [Gaur (1976), Hasselbeck et al. (2002)].

1.3.2.2 Surface plasmon-phonon polaritons

The advent of nanophotonics has created a new playground for exploring light-
matter interactions at the nanoscale. Manipulation of light beyond the diffraction
limit has been the persistent focus of nanophotonics, where photons can strongly
couple with either plasmons (SPPs) or phonons (SPhPs) [Caldwell et al. (2016)].
Initial research started with SPPs in metals, including Au, Ag, and Al in the
ultraviolet to the near-infrared, which has recently been extended to the MIR
and THz using alternative plasmonic materials by Hoffman et al. (2007). Doped
semiconductors are attractive because of their ability to tune the spectral range of
resonance frequency [Law et al. (2012), Sachet et al. (2015), Zhong et al. (2015)].
In this regard, graphene arguably has the most dynamic and tunable range, while
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a b(µm)

FIGURE 1.16 The Reststrahlen band and manifestations of LO phonon-plasmon
coupling in doped bulk semiconductors. (a) Reflectivity (red trace) and Raman (blue
trace) spectra of SiC obtained by Caldwell et al. (2015). (b) Anticrossing in Raman
scattering of GaAs observed by Mooradian & Wright (1966).

possessing extreme optical confinement of SPPs [Jablan et al. (2009), Ju et al.
(2011), Koppens et al. (2011), Grigorenko et al. (2012), Gao et al. (2012), Chen
et al. (2012), Fei et al. (2012), Gao et al. (2013, 2014)]. However, these materials
suffer from short lifetimes (10s of fs) and propagation distances, and broad
resonance features [Khurgin (2015)], limiting their deployment for applications.

On the other hand, SPhPs supported in dielectric polar crystals are promising
alternatives with long lifetimes (10s of ps). Candidate materials include polar
semiconductors, such as SiC and InP, and polar insulators, such as hexagonal
boron nitride (hBN) and SiO2, with their Reststrahlen bands in the MIR and
THz. Their nanostructures thus exhibit much sharper resonance features (with Q
factors 10s and 100s) [Wang et al. (2013), Chen, Francescato, Caldwell, Giannini,
Maß, Glembocki, Bezares, Taubner, Kasica, Hong et al. (2014), Caldwell et al.
(2014), Autore et al. (2018)], compared to those in SPP resonators (with Q <
10). Graphene nanoribbons have been demonstrated to support strong localized
plasmon resonances, whose frequencies can be broadly tuned (Fig. 1.17a) [Ju
et al. (2011)]. Nanoribbonsmade of hBNsheets can instead support strongSPhPs
in its Reststrahlen band; see Fig. 1.17b. As a comparison, the experimental Q
of hBN ribbons is ≈ 70 while graphene ribbons have Q ≈ 1 − 2. Despite the
benefits of low loss, propagating SPhPs still have short propagation distances
mainly due to the slow velocities [Caldwell et al. (2015), Yoxall et al. (2015)],
and the operation frequency window is limited to a narrow range. Coupled
SPPs and SPhPs thus can provide a platform with advantages of individual
constituents, if two materials are judiciously combined with sufficient spectral,
spatial, and mode symmetry overlap, which will lead to broadband, tunable, and
long-lifetime polaritons for MIR and THz optics.

Among many demonstrations of the hybrid materials combination, the cou-
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FIGURE 1.17 SPPs and SPhP nanoresonators in graphene and hBN. (a) Graphene
ribbons and electric gating to change the Fermi level. Infrared spectra of graphene ribbons
with varying widths. Adapted from Ju et al. (2011). (b) hBN ribbons and infrared spectra
of ribbons with different widths. Adapted from Autore et al. (2018). (c) Graphene/hBN
nanoribbons together with their calculated (white dashed lines) and experimental disper-
sion (colored markers). Adapted from Brar et al. (2014). (d) Multilayer graphene/hBN
ribbons and their infrared spectra. Adapted from Jia et al. (2015). (e) Calculated and
corresponding experimental dispersion relationship of the hybridized graphene SPPs and
hBN SPhPs (pink circles and square) and pure hBN (red triangles), which is visualized in
terms of the imaginary part of the reflection coefficient. (f) Dependence of the polariton
wavelength on the applied bias, with respect to the charge neutrality point, of graphene
within the graphene/hBN (pink circles) and hBN (red triangles). (g) hBN thickness
dependence of polariton wavelength for coupled SPP-HPhPs within graphene/hBN at
1525 cm−1 (pink circles), and of graphene SPP modes at 882 and 1617 cm−1 (filled
and open blue squares, respectively). Schematics of the SPP-HPhP and SPP modes are
provided as insets with graphene represented by the blue top layer and hBN by the red
slab with thickness. Adapted from Dai et al. (2015) and Caldwell et al. (2016).



Ultrastrong Light–Matter Coupling in Semiconductors Chapter | 1 35Ultrastrong Light–Matter Coupling in Semiconductors Chapter | 1 35Ultrastrong Light–Matter Coupling in Semiconductors Chapter | 1 35

pling of SPPs in graphene with SPhPs in hBN has attracted much interest [see,
e.g., Brar et al. (2014) and Dai et al. (2015)]. Especially SPhPs supported in thin
layers of hBN are hyperbolic phonon polaritons (HPhPs), where hyperbolicity is
defined as an extreme birefringence with permittivities along orthogonal crystal
axes possessing opposite signs. Hyperbolic polaritons allow electromagnetic
modes with large momenta to propagate within the Reststrahlen band [Poddubny
et al. (2013), Ferrari et al. (2015)]. Brar et al. (2014) reported hybrid SPP-SPhP
polaritons in coupled graphene and hBN ribbons. The dispersion relations of
the coupled graphene SPPs/h-BN SPhPs were derived from measurements of
nanoresonators with varying widths, where the graphene SPP mode exhibits an
anticrossing behavior near the energy of the hBN optical phonon; see Fig. 1.17c.
Later, Jia et al. (2015) engineered the coupling by varying the hBN thickness
in a layer-by-layer manner (Fig. 1.17d). A systematic experimental study of this
coupling using scanning near-field optical microscopy revealed the dispersion
relation of SPP-HPhP in graphene/hBN heterostructures and pure HPhP in hBN;
see Fig. 1.17e. The polariton wavelength within graphene/hBN heterostructures
could be varied by > 20% compared with hBN, by changing the free carrier
density in graphene (Fig. 1.17f), and it is also sensitive to the thickness of hBN
(Fig. 1.17g pink line) while SPP waves in graphene were independent of thick-
ness (Fig. 1.17g blue lines).

1.3.2.3 Ultrastrong coupling of SPP and SPhP

Despitemuch success in understanding and demonstrating the physics of plasmon-
phonon polaritons in a variety of materials, the coupling strength has remained
quite limited due to the intrinsically weaker oscillator strengths of vibrational
modes compared to electronic transitions. In addition, the SPP waves are more
weakly bonded to the surface at long wavelengths, leading to a significantly
higher mode volume. Although engineering phonon properties in materials can
be challenging, nanophotonic tools have enabled ingenious design of structures
possessing ultrasmall mode volumes, which can greatly enhance light-matter
interaction strengths.

Very recently, Yoo et al. (2020) utilized the epsilon-near-zero (ENZ) prop-
erties of coaxial nanocavities possessing extreme light confinement in a few-nm
gap to achieve USC of vibrational modes in SiO2. The designed cavities exhib-
ited a transmission resonance that can be understood as either an ENZ resonance
or a zeroth-order FP resonance, and the resonance frequency can be shifted by
adjusting geometric parameters while maintaining strong optical confinement
(Fig. 1.18a). As the resonance happens near the frequency where the dielectric
constant is close to zero, the electric field is approximately spatially uniform
with a very long effective wavelength to collectively connect a wide range of
oscillators for boosting the coupling strength. Thus, as the dimension of the
designed cavities is continuously changed and the resonance frequency is swept
across the SiO2 LO phonons, a clear anticrossing in transmission spectra is ob-
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served (Fig. 1.18b) and detailed analysis reveals that the Rabi splitting is 50%
of the resonance frequency, or η ∼ 0.25.

ba

FIGURE 1.18 Ultrastrong plasmon-phonon coupling in the MIR. (a) Schematics and
scanning electron microscope images of coaxial nanocavities filled with SiO2. (b) In-
frared transmission spectra of coaxial nanocavities filled with SiO2 of varying diameters.
Adapted from Yoo et al. (2020)

.

1.3.3 Exciton polaritons

Excitons resonantly interacting with photons in a microcavity – microcavity
exciton polaritons – have been studied for many years since the pioneering
work on GaAs QWs by Weisbuch et al. (1992). GaAs QWs are sandwiched
between two epitaxially grown distributed Bragg reflectors (DBRs) that form a
cavity [Weisbuch et al. (1992), Bloch et al. (1998), Skolnick et al. (1998), Deng
et al. (2002)]. The formed cavity can display a sharp resonance in reflectivity,
and the electric or magnetic field can be maximized at the position where QWs
are located. When the exciton energy is on resonance with a cavity mode
frequency, two dips or peaks appear in a reflectivity or transmittance spectrum
with a clear anticrossing behavior. However, the oscillator strength of Wannier
excitons in GaAs QWs is typically small, leading to small η, typically less than
10−3. Furthermore, the exciton binding energy is comparable to the ambient
thermal fluctuations, and thus, the strong coupling limit, C > 1, is achieved only
at cryogenic temperatures. Wannier excitons in other inorganic semiconductors,
including GaN [Christmann et al. (2008)] and ZnO [van Vugt et al. (2006),
Chen et al. (2011), Guillet et al. (2011)], with larger exciton binding energies
and oscillator strengths, have been utilized to push the operation temperature
to room temperature and achieve larger values of η, but USC has never been
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obtained for excitons in inorganic semiconductors.

a b c

FIGURE 1.19 Ultrastrong coupling of excitons and photons in organic semiconductor
squaraine in a microcavity. (a) Contour plots of angle-resolved transmission spectra for
a 140-nm-thick microcavity entirely filled with squaraine. (b) Polariton peak energies of
UPs and LPs normalized to the transition energy as a function of coupling strength. Both
solid and empty dots are from experiments. Dashed lines are calculated eigenfrequencies
of the approximated Hamiltonian ignoring CRTs, while solid lines are calculated eigen-
frequencies of the full Hamiltonian. (c) Polariton peak energies as a function of cavity
thickness (detuning) at η = 0.54. Solid dots are experimental data and solid lines are
calculation based on the Hopfield Hamiltonian. Shaded area indicates a polariton gap.
Adapted from Gambino et al. (2014).

Screening is typically weak in organic materials because of their small di-
electric constants, which leads to the formation of Frenkel excitons with Bohr
radii of the same order as the size of the unit cell. These excitons possess
large binding energies and oscillator strengths and generally display, when in
cavities, larger values of η than Wannier excitons. Some exemplary materials
include tetra-(2,6-t-butyl)phenol-porphyrin zinc (4TBPPZn) (η ≈ 0.03) [Lidzey
et al. (1998)], J aggregates (η ≈ 0.09) [Wei et al. (2013)], 2,7-bis[9,9-di(4-
methylphenyl)-fluoren-2-yl]-9,9-di (4-methylphenyl)fluorene (η ≈ 0.14) [Kéna-
Cohen & Forrest (2010)], and squaraine (η ≈ 0.27) [Gambino et al. (2014)].
Figure 1.19a displays angle-dependent transmission measurements with TE po-
larized light for the full cavity containing squaraine (contour plot) and a bare
cavity (circular dots). Both the upper and lower polariton branches display an
almost dispersionless behavior and agree with theoretical results based on the
transfer matrix method, which intrinsically takes into account the CRTs. Fig-
ure 1.19b shows the upper and lower polariton energies normalized to the exciton
energy as a function of coupling strength. Linear relation is only approximately
valid if η < 0.2, while large deviation from linear dependence when η > 0.2 can
be excellently corrected using the full Hopfield model, suggesting that USC is
achieved. Also, a polariton gap is observed in the dispersion for a system with
η = 0.54, which is another evidence of USC (see Figure 1.19c).

Emerging nanomaterials, such as semiconducting single-wall carbon nan-
otubes (SWCNTs) [Graf et al. (2016, 2017), Gao et al. (2018)], transition metal
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dichalcogenides (TMDs) [Liu et al. (2015), Dufferwiel et al. (2015), Liu et al.
(2016), Chen et al. (2017), Lee et al. (2017), Dufferwiel et al. (2017), Sun et al.
(2017)], and low-dimensional perovskites [Su et al. (2017), Wang et al. (2018),
Zhang et al. (2018), Shang et al. (2018), Su et al. (2018), Bao et al. (2019), Su
et al. (2020)], have characteristics of both Wannier and Frenkel excitons, where
the exciton wavefunction has a substantial spatial extent while the screening
from the lattice is weak. Due to strong quantum confinement, excitons in these
materials usually have large oscillator strengths and binding energies and are
stable even at room temperature.

Graf et al. (2016) demonstrated SC between photons in a FP cavity and
excitons in a semiconducting SWCNT-polymer composite, both in reflectivity
and photoluminescence, as shown in Fig. 1.20a. In addition to a large VRS
exceeding 100meV, a cooperative enhancement effectwith g ∝

√
N was observed

as the SWCNT occupation ratio was systematically adjusted, where N is the
number of nanotubes. Graf et al. (2017) further implemented a cavity-integrated
light-emitting field effect transistor consisting of a semiconducting SWCNT-
polymer composite, which allowed ambipolar charge transport. Under strong
current injection, electroluminescence from the LP branch was observed from
the low wavevector region of the dispersion, suggesting efficient relaxation. By
changing the gate voltage to adjust charge density, the ground state was bleached
and overall oscillator strength was reduced. As a result, the VRS decreased, and
the system continuously transitioned from strong to weak coupling.

Gao et al. (2018) employed aligned SWCNT films also inside a FP cavity
and observed a polarization-dependent VRS (Fig. 1.20b), suggesting that the
exciton-polaritons inherited anisotropic properties from the SWCNT excitons.
Detailed analysis revealed the existence of exceptional points in the polariton
dispersion surfaces (Fig. 1.20c), where the LP branch and UP branch collapse
at the exciton energy. The largest VRS in the thickest device was 329meV,
corresponding to η ≈ 0.13; see Fig. 1.20d. Furthermore, an increase of the film
thickness displayed cooperative enhancement of g, i.e., VRS was proportional
to the square root of the film thickness; see Fig. 1.20e.

1.3.4 Magnon polaritons, spin-magnon coupling, and
magnon-magnon coupling

Hybrid quantum systems have seen an increased interest in recent years due
to their potential use in quantum communication platforms such as quantum
memories, quantum transducers, and quantum information processors [Zhang,
Zhu, Zou & Tang (2016), Bittencourt et al. (2019), Zhang et al. (2020)]. In
these systems, coupling occurs between two excitations coming from distinctly
different constituents, e.g., molecules embedded in optical cavities, exciton-
polaritons in a microcavity, and magnons in microwave cavities. In this section,
we briefly review some of the recent research efforts on SC and USC phenomena
involving magnons.
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FIGURE 1.20 SC of excitons and photons in semiconducting SWCNTs. (a) Angle-
resolved reflectivity and photoluminescence spectra for (6,5) SWCNTmicrocavity exciton
polaritons with increasing nanotube concentration (from top to bottom) and increasing
cavity thickness and detuning from (left to right). Adapted from Graf et al. (2016).
(b) Transmittance spectra for a cavity containing aligned (6,5) SWCNTs at zero detuning
for various polarization angles. (c) The dispersion surfaces of the UP and LP for the
device in (b) showing exceptional points (EPs). (d) Transmittance spectra for parallel
polarization at zero detuning for devices containing aligned SWCNT films of different
thicknesses. The largest VRS is 329 meV for the thickest film. (e) VRS for parallel
polarization at zero detuning as a function of the square root of the film thickness,
demonstrating collective enhancement. Adapted from Gao et al. (2018).
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Cavity optomagnonics, where a set of spin waves (or magnons) collectively
couples to the confined electromagnetic field of a cavity [Kusminskiy (2019a,b),
Parvini et al. (2020)], has recently seen some of the first experimental obser-
vations of coupling between magnons in the ferrimagnetic insulator YIG to
microwave photons both in the SC [Huebl et al. (2013), Tabuchi et al. (2014),
Zhang, Zou, Jiang & Tang (2014), Haigh et al. (2015)] and USC [Goryachev
et al. (2014)] regimes. Goryachev et al. (2014) observed USC between the
magnon resonances of a submillimeter YIG sphere and the bright cavity mode
of a double-post 3D microwave reentrant cavity at mK temperatures. Using a
novel multipost design [Tobar & Goryachev (2019)], C ∼ 105 was obtained, to-
gether with η ∼ 0.1. The cavity transmission as a function of BDC showed a clear
anticrossing between the bright cavity mode f↑↓ and the magnon mode M1 (see
Fig. 1.21a) and between the dark cavity mode f↑↑ and the magnetostatic magnon
modes M2 and M3. The latter anticrossing showed SC with C reaching 103; see
Fig. 1.21b. In addition, the authors provided straightforward modifications to
the cavity design that could potentially reach C ∼ 107.

FIGURE 1.21 High-cooperativity cavity QED in the USC regime with magnons at
microwave frequencies. (a) Cavity microwave transmission as a function of applied
magnetic field, BDC. Anticrossings between the cavity modes f↑↓ (bright), f↑↑ (dark)
and the magnon modes M1, M2, and M3 are observed close to BDC = 0.743T and
BDC = 0.471T, respectively. Inset: zoom-in of the red dashed area shown on the left.
(b) Three-mode anticrossing spectra and interacting model fit (red dashed red lines).
First-order cancellation of the coupling prohibits the magnon mode M1 to interact with
the dark cavity mode. Adapted from Goryachev et al. (2014).

Recent years have also seen the development of an exciting area of research
that focuses on antiferromagnets (AFMs) instead of ferromagnets/ferrimagnets.
In AFMs, magnonic excitations typically occur in the THz frequency range and
can couple with another degree of freedom coming from the same magnetic
system rather than excitations supplied by an external source. For example, a
spin-magnon system studied by Li, Bamba, Yuan, Zhang, Zhao, Xiang, Xu, Jin,
Ren, Ma, Cao, Turchinovich &Kono (2018) exhibited USC between the electron
paramagnetic resonance (EPR) of Er3+ spins and the quasi-ferromagnetic (qFM)
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FIGURE 1.22 Dicke cooperativity observed in spin-magnon interactions in the USC
regime. (a) Anticrossing behavior at 10K in the THz frequency range between the Er3+
EPR and the Fe3+ qFM magnonmode of the rare-earth orthoferrite ErxY1−xFeO3. An ap-
pliedmagnetic field tunes theEPRwith respect to the fixedmagnonmode. (b)Cooperative
square-root-dependence of the coupling strength g on the number of EPR-contributing
spins. Adapted from Li, Bamba, Yuan, Zhang, Zhao, Xiang, Xu, Jin, Ren, Ma, Cao,
Turchinovich & Kono (2018).

mode of the Fe3+ magnons in the rare-earth orthoferrite, ErxY1−xFeO3. An
applied external DC magnetic field tuned the EPR with respect to the fixed qFM
magnon mode frequency, and a clear anticrossing behavior was resolved in the
THz range; see Fig. 1.22a. Moreover, a g ∝

√
N behavior (Dicke cooperativ-

ity), where N is the net density of EPR-contributing spins, was obtained; see
Fig. 1.22b. The authors estimated a maximum η = 0.18 in one of the configu-
rations, putting the system in the USC regime. Another example falling in this
category is magnon-magnon coupling inside a magnetically ordered material
[Liensberger et al. (2019), MacNeill et al. (2019), Makihara et al. (2020)]. In
these studies, coupling occurred between different magnon modes, and g was
tunable by changing the applied magnetic field direction. Makihara et al. (2020)
reported USC between the qFM and quasi-antiferromagnetic (qAFM) magnon
modes in YFeO3. The authors were able to map the spin model of this system
into an anisotropic Hopfield Hamiltonian in which the CRTs dominated the co-
rotating terms, leading to giant vacuum BS shifts that dominated the shifts due
to VRS.

1.4 SUMMARY AND OUTLOOK

In this chapter, we reviewed the theory behind USC and some of the ground-
breaking experiments that have taken place since the first theoretical proposal
by Ciuti et al. (2005). These pioneering studies have unquestionably shown that
the USC regime can be achieved in diverse experimental systems, particularly
engineered semiconductor systems. Given the fact that the first experimental
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observation of USC was made only eleven years ago at the time of this writing,
the fast-paced and continuous progress this field has exhibited in the recent years
is truly remarkable. Not only the coupling strengths that can be achieved in
experiments have shown an order of magnitude increase during this past decade,
but also new and unexplored regimes of light-matter interaction such as the DSC
regime have emerged [Yoshihara et al. (2017), Bayer et al. (2017), Mueller et al.
(2020)]. The USC regime is now readily accessible using equipment found in
most university laboratories around the world.

However, research in this field and our current understanding about it are far
from complete. Open questions regarding how to explain some of the experi-
mental observations made in the USC regime remain, and there is much more
that can be done on the experimental front to push the boundaries even further
to reveal some of the exotic properties predicted for the ground states of systems
in the USC regime. In addition, in the same way as applications of light-matter
interactions that occur in cavities in the weak and SC regimes advanced the
development of solid state lasers, quantum emitters, and precision metrology,
the present and future applications of the USC regime are now starting to surface
and have found immediate applicability in the long-sought dream of realizing
quantum technologies such as quantum computers and quantum simulators. The
authors look forward to seeing where this field will be in five, ten, and twenty
years from now and what new exciting discoveries will emerge.
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